Monomer-Dimer Equilibration of Water-soluble Porphyrins as a Function of the Co-ordinated Metal Ion

By M. KRISHNAMURTHY,* J. R. SUTTER, and P. HAMBRIGHT (Chemistry Department, Howard University, Washington, D.C. 20001)

Summary Tetrakis-(4-sulphophenyl)porphyrin and its four co-ordinate metal complexes dimerize, while the five- or six-ligated metalloporphyrins are monomers in aqueous, electrolyte-containing solutions.

THE study of porphyrins and metalloporphyrins in aqueous and non-aqueous solution is always complicated by the possible presence of dimers or higher aggregates.¹ The nature and kinetics of μ -oxobridge type dimerization as found in ferric porphyrins is fairly well understood,² but the factors that promote association involving either metalfree³ or normal metalloporphyrins,^{4,5} where μ -oxo bonding is absent, are not clear. We report a temperature-jump kinetic study on tetrakis-(4-sulphophenyl)porphyrin H_{2} -(TPPS₄), and eleven of its metal complexes in aqueous solution. The results suggest how the characteristics of the metal ion influence metalloporphyrin dimerization.

The equilibrium constant $K_{\rm D}$, for the monomer-dimer reaction $2P = P_2(k_f, k_r)$ was calculated⁴ from data on the spectrophotometrically observed deviations from Beers' law found upon porphyrin dilution at 20°, $\mu = 0.05$ Na-NO₃, 0.01 M Hepes buffer, pH 7. Using the temperaturejump method, a single concentration dependent relaxation (τ) was observed. Linear plots of τ^{-2} vs. the total porphyrin concentration, C_0 , in terms of the equation⁵

$$\tau^{-2} = (8k_f^2 K_D^{-1}) [C_0] + k_f^2 K_D^{-2}$$

were obtained. Least-squares procedures were used to calculate $k_{\rm f}$ from the slope, and $k_{\rm r}$ in terms of the relationship $K_{\rm D} = (k_{\rm f}/k_{\rm r})$.

porphyrin complexes are primarily four-co-ordinate in solution, having weak interactions with axial ligands. The complexes not found to dimerize are at least five-coordinate in solvating media, with the metal ion positioned above the porphyrin plane towards an extraplanar ligand. A five co-ordinated metal ion thus appears to be sufficient to inhibit metalloporphyrin dimerization in aqueous, electrolyte-containing solutions, where such axial groups may prohibit the closeness of approach required for dimer stability. The ferric porphyrins form μ -oxo bridged dimers which do not further associate. The other dimeric porphyrins and metalloporphyrins may be held together by $\pi - \pi$ interactions between the porphyrin π clouds, stabilized by a media of moderate ionic strength.4

In contrast to other reports, neither phenyl groups⁸ nor the symmetry of charge⁹ about the porphyrin periphery [both H_2 -(TPPS₄) and H_2 -(TPPS₃) dimerize] inhibit aggregation. Our results agree with the limited series of $(p-CO_{2}H)$ tetraphenyl-porphyrin complexes $[H_2-(TPPC_4)]^5$ where the free base, Cu and Ni form aggregates, while Zn is monomeric. The equilibrium and kinetic parameters for various

TABLE. Dimerization rate and equilibrium results for porphyrins and metalloporphyrins

Complex (T/K)			$K_{\rm D}/{ m M}^{-1a}$	$k_{f} / M^{-1} s^{-1a}$	$k_{\rm r}$ /s ^{-1a}	Ref. ^b
H ₂ -(TPPS ₄) (292)	••		9.6×10^4	$1.3 imes10^8$	1.4×10^{3}	T.P.
CuTPPS4 (292)			6.7×10^4	$6\cdot 2 \times 10^7$	9.2×10^2	T.P.
PdTPPS ₄ (292)	••	••	$2{\cdot}1$ $ imes$ 10 ⁵	$7.5 imes 10^7$	3.6×10^2	T. P .
$AgTPPS_4$ (292)	••		$6.9 imes 10^3$	4.8×10^6	7.0×10^2	T.P.
H_{2} -(TPPS ₈) (298)	••	• •	4.8×10^4	$2{\cdot}2 imes10^{8}$	4.6×10^{a}	4
$H_2^{-}(TPPC_4)$ (298)	••		4.6×10^4	6.4×10^7	1.4×10^{3}	4
CuTPPC ₄ (298)	••	••	1.7×10^{5}	$4.5 imes 10^7$	$2.7 imes 10^2$	5
NiTPPC ₄ (298)			1.6×10^{5}	$6\cdot 2 imes 10^7$	4.0×10^2	5
H_2 -(enP) (298)	••	••	$4.3 imes 10^{6}$	$2{\cdot}0~ imes~10^8$	50	3

^a Equilibrium and kinetic data, $\pm 10\%$. ^b T.P. refers to this paper.

Using these methods, H_2 -(TPPS₄), and its Cu^{II}, Pd^{II} and Ag^{II} complexes were found to be dimerized, with the parameters shown in the Table. The H_2 -(TPPS₄) complexes of Zn^{II}. V^{IV}, Cr^{III}, Mn^{III} and Co^{III}, showed no kinetic relaxations or deviations from Beers' law, and are thus monomeric. FeIII below pH 3 and the iron dimer Fe-O-Fe above pH 8 were also monomeric. Ni^{II}TPPS, had two relaxations on the same time scale as the other dimers at pH = 7, which may be related to both dimerization and axial ligation.6

Stability constants^{1,7} indicate that Cu, Ag and Pd

porphyrin types (Table) are similar. The ion-pair equilibria noted for the positively charged free base and metal complexes of tetrakis-(4-methyl-pyridyl)porphyrin¹⁰ may explain why this porphyrin does not associate,4,5,11 while the positively charged ethylenediamine derivative of protoporphyrin-IX [H₂-(enP)],³ which lacks such behaviour, is dimeric.

We thank the USAEC and NSF for financial support, and NIH for a Special Faculty Fellowship (to P.H.).

(Received, 18th September 1974; Com. 1178.)

¹ P. Hambright, Co-ordination Chem. Rev., 1971, 6, 247.

- ^{nem}. 300., 1972, 74, 4011.
 ⁶ R. F. Pasternack, L. Francesconi, D. Raff, and E. Spiro, Inorg. Chem., 1973, 12, 2606.
 ⁶ R. F. Pasternack, E. G. Spiro, and M. Teach, J. Inorg. Nucl. Chem., 1974, 36, 599.
 ⁷ P. Hambright in 'Porphyrins and Metalloporphyrins,' 2nd edn., ed. K. M. Smith, Elsevier, Amsterdam, 1975, Ch. 3.
 ⁸ K. A. Zachariasse and D. G. Whitten, Chem. Phys. Letters, 1973, 22, 527.
- ⁹ E. B. Fleischer, J. M. Palmer, T. S. Srivastava, and A. Chatterjee, J. Amer. Chem. Soc., 1971, 93, 3162.
 ¹⁰ P. Hambright and P. B. Chock, J. Amer. Chem. Soc., 1974, 96, 3123.
- ¹¹ P. Hambright and E. B. Fleischer, Inorg. Chem., 1970, 9, 1757.

 ⁴ I. Cohen, J. Amer. Chem. Soc., 1969, 91, 1980; P. Jones, K. Prudhoe, and S. B. Brown, J.C.S. Dalton, 1974, 912; J. Sutter, P. Hambright, M. Krishnamurthy, and P. B. Chock, Inorg. Chem., 1974, 13, 2764.
 ⁴ R. R. Das, R. F. Pasternack, and R. A. Plane, J. Amer. Chem. Soc., 1970, 92, 3312.

⁴ R. F. Pasternack, P. R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, P. Fasella, G. Venturo, and L. Hinds, J. Amer. Chem. Soc., 1972, 94, 4511.